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Overall considerations
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Performance of an optical fiber system cPrL

First step is to come up with a mathematical model describing the effect of the various systems
components on the modulated signal.

= Can then estimate the shape of the received distorted signal.

In most application, the fiber can be treated as a linear system:

= Described by an impulse response function h(t) or its Fourier transform H(f), with f the modulation
frequency

* Three important parameters characterize these functions.
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Power transmission in fiber of length L

Fraction of the steady (unmodulated) input optical power that is received at the output of the link,
Equals to H(f) evaluated at f = 0 Hz: H(0) = [ h(t)dt
For a fiber of length L and of linear attenuation coefficient a (km):

H(0) = exp(—al)

= Recall that loss on linear and dB scale are linked by ;5 = 4.343
= Localized power losses (couplers, connectors etc) may be included in distributed units of dB/km.
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Response time of optical fiber of length L

The response time Tf;per (~AT) is the width of h(t).

Determines the temporal spreading of the optical pulses

Response time is proportional to the fiber length.
= For example, we have seen that in a single mode fiber:

AT =~ L|D|AA

= With A/ is the source linewidth in nm
= Dis the dispersion coefficient of the fiber in ps/(nm-km)
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Bandwidth

The bandwidth Av in Hz, is the width of the transfer function |H(f)]|

In an analog system, the bandwidth determines the maximum frequency at which the input power
may be modulated and successfully detected by the receiver

H(f) and h(t) are Fourier transform: the bandwidth is inversely proportional to the response time
= Coefficient of proportionality depends on the actual profile of h(t)
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Maximum fiber length — principal impairments

Attenuation:
= Results in exponential drop of power.
= System’s performance becomes unacceptable if the received power
becomes smaller than the receiver sensitivity.

Dispersion:
= Results in increase of the width of the optical pulses carrying the

information.
= |f width exceeds the bit interval, inter symbol interference (ISI) occurs

Noise:
= Added by optical components (amplifiers etc)

Nonlinear distortions:
= Associated with intense optical pulses.
= Cross mixing and interference of multiplexed signals.

Receiver \UII\HI\H_\\

Distance -

| -

(@) Attenuation

Bit time

Pulse width

(£) Dispersion
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System performance dependence on bit rate

Effect on noise:

= For a fixed amount of power, higher bit rates corresponds to fewer photons
per bit, therefore more photon noise.

Effect on sensitivity:

= Receiver noise increases with bit rate as Af needs to be larger: sensitivity
therefore increases with bit rate.

Effect on pulse width:
= High bit rate means narrow pulses of light
= Spectrum is broader and the system more sensitive to dispersion.

Nonlinear effects:

= For fixed energy per bit, higher bit rate means higher power and therefore
stronger nonlinearities.

R iver sensitivity

Nonlinear IST

rg

Pulse peak pow

" Bit rate >
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cPrL

Attenuation limited performance — power budget
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Attenuation limited performance — power budget

Power budget is typically prepared in dB scale:

Ptr_PC_Pm_aLmax=prec

Transmitted Design Received
power . L. .
Non-radiative margin  Propagation power
losses losses
Transmitter O @ O @ O~ Receiver
connector connector connector

A

_Source power

P

ol

Optical power (dBm)

Length (km)
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Revisiting receiver sensitivity

We can think of the receiver sensitivity in terms of the minimum numbers of photons per bit (7;)
necessary to guarantee our desired BER

The optical energy per bit is therefore given as: hv 1
Receiver sensitivity (in linear scale) P.,. can be written as: P, = hv iy B

Keep in mind that when thermal noise dominates, the receiver sensitivity depends on the receiver
bandwidth and hence on the data rate ...
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Power budget and bit rate

A

Source power

Optical power (dBm)

0.01 0.1 1 10 100
Bit rate B (Gb/s)

Power budget as a function of bit rate B: as B increases, the power P.,. required at the receiver
increases (so that the energy per bit remains constant), and the maximum length L decreases
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Design guidelines 1

The receiver sensitivity in dB scale is given by:

_ hv nyB
P... = 10logy, 103 dBm

The maximum reach L,, ., of the system is therefore obtained from the power budget in dB as:

1/ _ hv nyB
Limax :E B, — Pc — B, —101log,, 10-3

Let a¢ be the total loss including connectors etc, then

L_1 (R (mW)
max — af 0810 hv ﬁOB
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Loss limits

Example with:
= 870 nm (o = 2.5 dB/km ), 1300nm (o = 0.4 dB/km ) and 1550 (e = 0.25 dB/km )
= p=1mW
" P.=P,=0
" 71y=300 photons/bit for 870 nm, 500 photons/bit for 1300 nm and 1550 nm

1000

— 1550 nm
£
=
<
g 100 1300 nm
C <
T
@
D ~
Coax cable 870 nm
10 | I |
0.001 0.01 0.1 1 10

Bit rate B (Gb/s)
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cPrL

Dispersion limited performance — rise time budget
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Dispersion limited performance

When a pulse is generated by the transmitter, propagates through the fiber and is detected, it does
not only loose power, but it also gains in width

Final pulse width o, depends not only on original pulse width g, but also:
= The response time of the transmitter, o,
= The response time of the fiber, o,
" The response time of the receiver, ;.

If all functions are independent Gaussian, the width response of entire communication system is:

2 __ 2 2 2
Osys = Otr + O-fiber + Orec

The final pulse width is therefore : 67 = 0§ + 03,5
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Dispersion limited performance

A principal design condition for the communication system link ensures that the
received pulse does not exceed a prescribed fraction of the bit period

= Dependence on the bit rate B

Trans.

o+ Receiver|

limit

Le:gth (km)

m
v
r

width of the
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Rise time budget

The rise time budget of the entire systems needs to be compatible with the intended operational bit
rate (B)

Even if the bandwidth of individual components exceeds the bit rate, the entire system may not
= Can use the concept of rise time T, (in s) which is related to the bandwidth Af (in Hz).

B
T, = ﬁ Af =475 for NRZ format

Af B for RZ format

Lecture 13 slide 18



Design guideline 2

The transmitter rise time T/
= Limited by the modulator operational bandwidth (or direct modulation)

The receiver rise time T2,
= Limited by transit times or RC time constant

The fiber ‘rise time’ szl-be,,
= Limited by dispersion

= The only rise time that depends on propagation length and on the fiber type

The overall system’s rise time T, is given by

Trz — thr + szib er T Trzec

cPrL
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Distance-bit rate limits

For a given receiver and transmitter, the system design is bout determining the maximum fiber
length

= Only length contribution comes from the fiber rise time

Multimode fiber (MMF)
" Pulse broadening is dominated by modal dispersion.

MME: Step-Index ny Impulse response

| hir)

— — -— { b erccns —

i‘,.,‘ cny

" For a chosen condition ATB < 1 get:
Nn,C
BL < ——
niA
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Distance-bit rate limits

Graded index multimode fiber (GRIN)
= Near parabolic refractive index profile of the core

= Light paths have sinusoidal trajectories

MME: GRIN

11972
~—
Y
A
>
iﬂ

= Differential delay between axial mode and highest mode is: AT = énlAz

" For a chosen condition ATB < 1 get:
8c

BL < 5
n{A
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Distance-bit rate limits

Single mode fiber (SMF)
= \We have already seen that assuming material dispersion dominates: AT ~ L|D|AA

SMF n,

1
|ID|AA

" For a chosen condition ATB < 1get:BL <

= For a ‘broad’ spectral width source, we can take AA = 44;. We therefore get

1
4Dl o,

BL <

Lecture 13 slide 22



m
=
N
—

Distance-bit rates limits

When the optical source has a small spectral width, the dispersion induced broadening depends on

the initial pulse width o
* |n this case, the broadening can be minimized by choosing an optimum value of g,

Pulses with smallest product of temporal/spectral widths have a Gaussian profile
= Transform limited pulses, which suffer the least dispersion

1/2
" |n this case the minimum value of broadening is found to occur for g, = (lﬁ—;l L)

= The rms broadened pulse is therefore o = (| 8,|L)/2
= For a chosen condition 40B < 1 get

TTC
8|D|A?

LB? <
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Dispersion limits

Example with:

* MMF withn;=1.46and A=0.01
= SMF at 1.55 um with D = 17 ps/km-nm
= SMF at 1.3 um with D = 1 ps/km-nm

1000:: "
— \
- /N
_ 1.3 um %,
- / \\
— ; \\
E 100 S Graded index . /Transform
3 - . limited
~ _ Step index
s\
c N
)
K2 i
| 10 =
|

| | |
0.001 0.01 0.1 1 10 100
Bit rate B (Gb/s)

1000
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Putting it all together

1000
1.55
al SMF
<\
—~ 100 Transform
i—é, limited
~
(D)
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c
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0O // Graded index
1 | | | | |
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m
v
r
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Evolution of systems cPrL

The evolution of fiber components and systems has been motivated by the need to increase the
transmission bit rate B and the reach L

= Various operating wavelengths, materials, fibers, light sources, detector and amplifiers are used as
building blocks

L U

| |
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E S

| |
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‘A
Wavelength | N | 1 | L
Ao (mm) 800 900 1000 1100 1200

[
E . LED (1
&

S

Detector: "

APD B[ InGaAs
iy
SOA AlGaAs
Amplifier: »
OFA

| s
B SMF Silica glass
- _ Eisil | DSF |
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First generation at 870 nm
= Fibers are either step-index or GRIN MMF
= Light source is either LED or laser diode (initially GaAs then AlGaAs)
= Sip-i-n detectors

= Performance limited by high attenuation (1.2 dB/km) and modal dispersion
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Operation at 1310 nm
= Fibers are now SMF
= Light source is laser diode (initially InGaAsP)
" InGaAs p-i-n detectors

—> Operated at lowest dispersion regime. Performance mostly limited by fiber attenuation (1.2 dB/km)
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Generation 3
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Operation at 1550 nm
= Light source are low-chirp single frequency distributed feedback laser diode (InGaAsP).
= |nGaAs p-i-n detectors

—> Operated at lowest attenuation. Performance mostly limited by fiber dispersion

Lecture 13 slide 29



Generation 4
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Detection based on phase
= Rather than detecting intensity of the signal light directly with a photodetector, use coherent detection
= Light from a local source (local oscillator) is mixed with the signal at the detector
= |t enhances the receiver sensitivity at the expense of increased complexity

= Commercial implementation has lagged behind in particular with the emergence of the 5th generation (but
there is now a renewed interest for coherence systems!)
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Generation 5
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Link with optical fiber amplifiers
= Development of SOA and fiber amplifiers had a huge impact on the performance of optical systems
= Compensate attenuation and dramatically extend the distance

= Performance mostly limited accumulation of noise and dispersion
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Generation 6
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Wavelength-division multiplexing (WDM)
= Makes use of multiple wavelengths (channels) transmitted through the same fiber to increase the capacity
= Supported thanks to broadband optical amplifiers that can simultaneously amplify all channels

= Performance mostly limited accumulation of noise, dispersion, mixing effects

Lecture 13 slide 32



PRESS RELEASE: 800G+ coherent optical interfaces boost large-
scale commercial deployment of 400G/800G OTN networks to
deal with rapid traffic growth

In the digital era, with the wide application of cloud computing, big data and Al
technologies, data traffic has been increasing exponentially, posing higher
requirements for network bandwidth. To cope with the rapid growth of traffic, the
port rate of OTN transmission networks has been continuously upgraded: from the
commercial use of 100G in 2012 to the large-scale deployment of 200G WDM in
2016, and then to the emergence of 400G WDM in 2020, the surging service traffic
drives the update and iteration of the transmission rate. At present, operators
gradually begin to have the demands for 800G OTN. 800G and above high-speed
OTN networks can provide larger bandwidths to meet the rapid growth of traffic,
reduce transmission costs, and improve network operation efficiency. It is estimated
that the growth of 800G+ coherent optical lines (which may operate at a lower rate
of 400G/800G in commercial deployment) will accelerate after 2025, at a
compound annual growth rate of 49.9% in 2022-2028. So far, a certain number of
800G+ ports have been shipped. It is predicted that the shipments of 800G+ ports
will exceed that of 200G ports in 202/, and 800G+ will become the mainstream
system rate.
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S-151

Mexico GTAC Works with Huawei to Deploy an 800G
Optical Network for Commercial Use, Facilitating City

Digital Transformation

Recently, GTAC a leading bandwidth wholesale operator in Mexico, has deployed an 800G commercial network in
cooperation with Huawei, helping GTAC stand out on backbone network in Latin America.

February 28, 2024 Recently, GTAC a leading bandwidth wholesale operator in Mexico, has deployed
an 800G commercial network in cooperation with Huawei, helping GTAC stand
out on backbone network in Latin America. The network uses 800G for core links
and Super C6T technology for optical layers, with the maximum single-fiber
capacity standing at 48 Tbit/s. In the future, the network will provide high
bandwidth assurance for new services such as e-government, smart
manufacturing, and FinTech in Mexico, accelerating digital transformation in the
country.
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NEC reaches 800Gb/s long-
distance transmission over optical
submarine cable

Field trial section
(round trip)

NEC Corporation has successfully completed a long-distance field trial of an optical submarine cable system using a new transponder that, according

to NEC research, could have the world's highest level of transmission performance of 800Gb/s.

This field trial was conducted using the Indonesia Global Gateway (IGG) optical submarine cable, owned by PT Telkom Indonesia (Persero) Thk
(Telkom), Indonesia's largest telecommunications carrier, and using NEC's latest transponder, the XF3200. In the field trial, NEC conducted

wavelength division optical transmission of 800Gb/s optical signals over 2,100km.
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cPrL

Articles /| News

Cisco, Microsoft beam fast optical
signal under the Atlantic

Cisco and Microsoft partnered on an optical networking trial that beamed a signal at 800 Gb/s across the
recently powered Amitié transatlantic communications cable. The trial was targeted at showing
performance support for growing cloud and artificial intelligence (Al) services.

The test was conducted across the 6,234-kilometer long Amitié submarine cable that connects the United
States, United Kingdom and France. The cable runs between Boston and Bordeaux, France, and uses
space division multiplexing (SDM) technology and 16 fiber pairs, with repeater power shared across the
fiber pairs.
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Where do we go now ?

AWDM
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One last dimension ... space ?

Multi core fibers

Few modes fibers

= Fabrication to optimize mode coupling, and to reduce differential mode group delay
= Complex signal processing is required to separate coupled modes during propagation

Beam (d)
Splitters
(c) LPo,
E\ SMF
n r4 K1 A0
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F3B.3 OFC 2021 @ OSA 2021

319 Tb/s Transmission over 3001 km with S, C and LL band
signals over >120nm bandwidth in 125 pm wide 4-core fiber

Benjamin J. Puttnam®, Ruben S. Luis, Georg Rademacher, Yoshinari Awaji, and Hideala Furukawa

1) Photonic Network System Lab, NICT, 4-2-1, Nukui Eitamachi, Koganei, 184-8793 Tokyo, Japan.
*E-mail: benf@nict. go jp

Abstract: We demonstrate recirculating transmission of 352 x 25 GHz spaced channels covering

=120 nm of 5, C and L-bands 1n a 125pum dimeter, 4-core fiber, measuring a decoded throughput of
319 Thb/s at 3001 km. © 2021 The Authoris)
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Glasgow, UK
49th European Conference on Optical Communications (ECOC 2023) 1-5 October 2023

22.9 Pb/s Data-Rate by Extreme Space-Wavelength Multiplexing

B. J. Puttnam("), M. van den Hout(2- G. Di Sciullo'?), R. S. Luis(Y), G. Rademacher(!",
J. Sakaguchi®, C. Antonelli®, C. Okonkwo!?, and H. Furukawa("

() NICT, 4-2-1, Nukui Kitamachi, Koganei, 184-8795 Tokyo, Japan, E-mail:ben@nict.go.jp
) Eindhoven University of Technology, The Netherlands © University of L’Aquila and CNIT, 67100,
L’Aquila, Italy. " now with INT, University of Stutigart, Pfaffenwaldring 47, 70569 Stuttgart, Germany.

Abstract We transmit 750 wavelength channels covering 19 THz bandwidth over a few-mode multi-
core fiber with 114 spatial channels, recording a total GMI-estimated data-rate of 24.7 petabit/second
and 22.9 Pb/s after LDPC decoding, both exceeding 200 Tb/s per spatial channel.
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Fig. 2: Experimental set-up for extreme WDM-SDM transmission
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Hollow core fibers

A hollow core fiber is an optical fiber which guides light essentially within a hollow region.

= Only a minor portion of the optical power propagates in the solid fiber material.
= Refractive index of core is lower than that of the surrounding cladding material ?

The guiding mechanisms are different from TIR |
= Can rely on photonic bandgap - Essentially, a kind of two-dimensional Bragg mirror. Therefore the
guidance only works over a limited wavelength range. (FBGF)

= Can rely on inhibited coupling - structure and dimensions are engineered such that the cladding
supports a continuum of modes strongly phase-mismatched with core modes, thus inhibiting the latter
from escaping the core. (ARF)

= Tutorial: Vol. 15, No. 1 / March 2023 / Advances in Optics and Photonics

F. Poletti, Optics express 22(20), pp. 23807 (2014)
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Hollow core fibers applications ?

High capacity, low latency data transmission

= Combined very low nonlinearity and potential very low transmission loss

= Potential, in theory, to increase transmission capacity at transmission speeds that are 30% higher
Power delivery

= Very small fraction of light is guided in glass

" |Important for pulsed operation where peak powers could induce detrimental nonlinear effects or even
exceed damage threshold of material.

Guidance of UV light

= UV guiding fibers are highly sought after in laser and spectroscopy application

* Hollow core provide practical solutions for delivery of UV sustainable to high power and long term
irradiation

Nonlinear optics

= The hollow core can be filled with gas (or liquid) that can tune the dispersion and nonlinear properties
of the fiber
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Postdeadline papers on data-transmitting HCFs from Southampton:

3.5 dB/km

2012: OFC (PDP5A.2), ECOC (Th3A.3, Th3A.5)
2013: OFC (Th5A.3)

2015: OFC (Th5A.1)

2016: OFC (Th5A.3)

2017: OFC (Th5B.8)

’ 2018: ECOC (Th3F2)
2019: OFC (Th4A.1), ECOC (PD3.1, PD5.1)
<0.11 dB/km 2020: OFC (Th4B.4, Th4B.5) L L’Y”j
2021: OFC (F3A.4, F3B.5) . b
2022: OFC (Th4C.7) This work
~ 2024: OFC (Th4A.8)
—e—Solid core
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:3 025+
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Frequency combs

An optical frequency comb is an optical spectrum which consists of equidistant lines

= |tis an optical ruler
= Offer a direct link between the optical and the microwave frequencies

Time domain

7 e
\;U U;V 7

—>|2y -«

f—1, = 1/f—]
Frequency domain _
r f 5
~ - n ~10
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Frequency combs

Mode-locked lasers are frequency combs

Femtosecond Laser Frequency Comb

— Cavity modes are locked in phase to generate a short pulse once every roundtrip time 2L/v,

\

Pulsed output
of femtosecond

| laser
\\
W
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Optical frequency combs
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Frequency combs EPFL

Frequency combs can be generated in micro-rings

= Kerr frequency combs

wavelength (nm)

2000 1900 1800 1700 1600 1500 1400 1300
150THz | 157.2THz / 1907.1nm 93 18 TH? / 156207 pe
g
=
CW Input C'Dmb OUtpUt 150 160 170 180 "eque}]%?l(mz) 200 210 220 230
4) Brasch, V. et al. 2016. Science, 351(6271), pp.357-360
Hydex Si:Nitride Silica toroid Crystals Silica wedge Quartz Diamond Al:Nitride

RMIT Cornell, MPQ, OEWaves Caltech Harvard Yale
Purdue, NIST EPFL, JPL
G-burg, Caltech EPFL
EPFL,
UCLA
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(Some) Applications

LETTER

doi:10.1038/nature22387

Microresonator-based solitons for massively
parallel coherent optical communications

Pablo Marin-Palomo'#, Juned N. Kemal'#, Maxim Karpov?#, Arne Kordts?, Joerg Pfeifle!, Martin H. P.

Pfeiffer?, Philipp Trocha!,

Stefan Wolf!, Victor Brasch?, Miles H. Anderson?, Ralf Rosenberger', Kovendhan Vijayan!, Wolfgang Freude!?,

Tobias J. Kippenberg? & Christian Koos"*
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OPTICS

Microresonator soliton
dual-comb spectroscopy

Myoung-Gyun Suh,* Qi-Fan Yang,* Ki Youl Yang, Xu Yi, Kerry J. Vahala}
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I. Coddington et al, Optica 3(4), pp 424 (2016)
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m EE—440 | C.-S. Bres

More frequency combs applications =PFL

Silicon photonics

functional chips
AlGaAsO! high-Q -_—
gt : D Haowen Shu et al., Microcomb-driven
= silicon photonic systems
Nature February 2022

Coherent comb
generation

lI-V-on-silicon
photonic integration

Fig.1|Microcomb-based SiPh optoelectronic systems. Conceptual chips. With I11-V-on-silicon photonicintegration, the chips are expected to

drawlngs for several Integrated optoelectronicsystems (data transmisslon, contalnall the essentlal functions (for example, laser-microcomb generation,

microwave photonic signal processing, optical beam steering and photonic passive and active optical components, and the electronics for supporting ¢ 5. Didd
Ref: S. Diddams

computing) realized by combining amicrocomb source with silicon photonic signal processing and system control).
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That’s all !

LIGHTSABER

The coolest weapon ever. Search your feelings. You know that it is true.

o

peeee
%;g‘;o’o)é
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